|  | 
| template<typename MatrixType , typename ResultType > | 
| void | capd::matrixAlgorithms::gauss (MatrixType a, ResultType b, ResultType &result) | 
|  | 
| template<typename MatrixType , typename VectorType > | 
| VectorType | capd::matrixAlgorithms::gauss (const MatrixType &A, const VectorType &b) | 
|  | Gauss elimination.  More... 
 | 
|  | 
| template<typename MatrixType > | 
| void | capd::matrixAlgorithms::orthonormalize (MatrixType &Q) | 
|  | 
| template<typename MatrixType > | 
| void | capd::matrixAlgorithms::orthonormalize (MatrixType &Q, const typename MatrixType::RowVectorType &v) | 
|  | 
| template<typename MatrixType > | 
| void | capd::matrixAlgorithms::orthonormalize (MatrixType &Q, const MatrixType &R) | 
|  | 
| template<typename MatrixType > | 
| void | capd::matrixAlgorithms::QR_decompose (const MatrixType &A, MatrixType &Q, MatrixType &R) | 
|  | 
| template<typename MatrixType > | 
| int | capd::matrixAlgorithms::symMatrixDiagonalize (const MatrixType &A, MatrixType &D, typename MatrixType::ScalarType diagonalizingRelTolerance=capd::TypeTraits< typename MatrixType::ScalarType >::epsilon()) | 
|  | 
| template<typename MatrixType > | 
| MatrixType::ScalarType | capd::matrixAlgorithms::spectralRadiusOfSymMatrix (const MatrixType &A, typename MatrixType::ScalarType diagonalizingRelTolerance=capd::TypeTraits< typename MatrixType::ScalarType >::epsilon()) | 
|  | this function computes bound for spectral radius of a symmetric matrix first it computes matrix which has the same eigenvalues and which is close to diagonal, next bound is computed from Gerschgorin theorem  More... 
 | 
|  | 
| template<typename MatrixType > | 
| MatrixType::ScalarType | capd::matrixAlgorithms::maxEigenValueOfSymMatrix (const MatrixType &A, typename MatrixType::ScalarType diagonalizingRelTolerance=capd::TypeTraits< typename MatrixType::ScalarType >::epsilon()) | 
|  | this function computes bound for maximal eigenvalue of a symmetric matrix first it computes matrix which has the same eigenvalues and which is close to diagonal, next bound is computed from Gerschgorin theorem  More... 
 | 
|  | 
| template<typename MatrixType > | 
| MatrixType | capd::matrixAlgorithms::matrixExp (const MatrixType &M, typename MatrixType::ScalarType tolerance=capd::TypeTraits< typename MatrixType::ScalarType >::epsilon()) | 
|  | 
| template<typename MatrixType > | 
| void | capd::matrixAlgorithms::croutDecomposition (const MatrixType &A, MatrixType &D, MatrixType &G) | 
|  | Crout Decomposition of a matrix As a result matrix D is a lower triangle and G is an upper triangle with 1 on diagonal.  More... 
 | 
|  | 
| template<typename MatrixType > | 
| MatrixType | capd::matrixAlgorithms::invLowerTriangleMatrix (const MatrixType &A) | 
|  | 
| template<typename MatrixType > | 
| MatrixType | capd::matrixAlgorithms::invUpperTriangleMatrix (const MatrixType &A) | 
|  | 
| template<typename MatrixType > | 
| MatrixType | capd::matrixAlgorithms::inverseMatrix (const MatrixType &A) | 
|  | 
| template<typename MatrixType > | 
| MatrixType | capd::matrixAlgorithms::gaussInverseMatrix (const MatrixType &A) | 
|  |