CAPD::DynSys Library  6.0.0
capd::diffAlgebra Namespace Reference

Classes

class  BasicC2Curve
 This class is a data structure for storing of a parametric curve together with first and second order derivatives with respect to initial point. More...
 
class  BasicCnCurve
 This class is a data structure for storing of a parametric curve together with its partial derivatives with respect to initial point up to desired order. More...
 
class  BasicCurve
 This class is a data structure for storing of a parametric curve together with first order derivatives with respect to initial point. More...
 
class  C0TimeJet
 
struct  CoeffTraits< C0TimeJet< VectorT > >
 
class  C1TimeJet
 
struct  CoeffTraits< C1TimeJet< MatrixT > >
 
class  C2Curve
 This class provides methods for evaluation of the parametric curve for a given parameter value. More...
 
class  C2Curve< BaseCurveT, true >
 
class  C2TimeJet
 
struct  CoeffTraits< C2TimeJet< MatrixT > >
 
class  CnContainer
 The class is used to store coefficients of a multivariate polynomial of degree D $ f:R^N->R^M $ Coefficients themselves can be polynomials as well. More...
 
class  CnCurve
 This class provides methods for evaluation of the parametric curve for a given parameter value. More...
 
class  CnCurve< BaseCurveT, true >
 
class  CnTimeJet
 The class represent a jet of solution to a nonautomnomous ODE. More...
 
struct  CoeffTraits< CnTimeJet< MatrixT, DEGREE > >
 
struct  CoeffTraits
 This class provides a trait of being set of a given type, i.e. More...
 
class  Curve
 This class provides methods for evaluation of the parametric curve for a given parameter value. More...
 
class  Curve< BaseCurveT, true >
 Specialization for interval types. More...
 
class  CurveInterface
 This class provides common interface for all types of curves. More...
 
class  FadCurve
 
class  Hessian
 This class is used to store second order partial derivatives of a function $ R^D\to R^M $. More...
 
class  HomogenousPolynomial
 Class HomogenousPolynomial provides indexing and some algorithms for multivariate homogenous polynomials. It does not store the coefficients of the polynomial. It is assumed that the memory is already allocated in a continuous block. More...
 
class  Jet
 The class is used to store coefficients of a truncated power series to degree D $ f:R^N->R^M $ Coefficients area assumed to be of a numeric type. More...
 
class  ParametricCurve
 This file defines an abstract class that represents parametric curve in $R^n$. More...
 
class  BaseSolutionCurve
 This file defines class that represents parametric curve in $R^n$. More...
 
class  SolutionCurve
 
class  SolutionCurve< CurveT, true >
 
class  TimeRange
 TimeRange is a base class for all types of sets. It stores the current time in ODE case or number of iterations in the case of discrete dynamical system case. More...
 

Functions

template<typename Object , __size_type M, __size_type N, __size_type D>
bool operator== (const CnContainer< Object, M, N, D > &c1, const CnContainer< Object, M, N, D > &c2)
 checks if two CnContainers are exactly the same. More...
 
template<class CurveT , class HessianT >
void oneStepHessian (typename CurveT::ScalarType h, const CurveT &curve, HessianT &result)
 
template<class Curve , class Jet >
void oneStepJet (typename Curve::ScalarType h, Curve &curve, Jet &v)
 
template<typename Scalar , __size_type M, __size_type D>
bool operator== (const Hessian< Scalar, M, D > &h1, const Hessian< Scalar, M, D > &h2)
 
template<typename Scalar , __size_type M, __size_type D>
bool operator!= (const Hessian< Scalar, M, D > &h1, const Hessian< Scalar, M, D > &h2)
 
template<typename ScalarType , __size_type D>
Hessian< ScalarType, D, D > operator* (const capd::vectalg::Matrix< ScalarType, D, D > &m, const Hessian< ScalarType, D, D > &c2)
 
template<typename ScalarType , __size_type D>
Hessian< ScalarType, D, D > operator* (const Hessian< ScalarType, D, D > &c2, const capd::vectalg::Matrix< ScalarType, D, D > &m)
 
template<typename ScalarType , __size_type D>
Hessian< ScalarType, D, D > operator* (ScalarType c, const Hessian< ScalarType, D, D > &H)
 
template<typename ScalarType , __size_type D>
Hessian< ScalarType, D, D > operator+ (const Hessian< ScalarType, D, D > &H1, const Hessian< ScalarType, D, D > &H2)
 
template<typename T , capd::vectalg::__size_type M, capd::vectalg::__size_type D>
std::ostream & operator<< (std::ostream &str, const Hessian< T, M, D > &h)
 
template<typename Scalar , __size_type M, __size_type D>
void setDimensionInArray (Hessian< Scalar, M, D > *, __size_type, __size_type, __size_type)
 
template<typename Scalar >
void setDimensionInArray (Hessian< Scalar, 0, 0 > *t, __size_type N, __size_type M, __size_type D)
 
template<typename MatrixT , __size_type DEGREE>
bool operator== (const Jet< MatrixT, DEGREE > &x, const Jet< MatrixT, DEGREE > &y)
 
template<typename MatrixT , __size_type DEGREE>
bool operator!= (const Jet< MatrixT, DEGREE > &x, const Jet< MatrixT, DEGREE > &y)
 
template<typename MatrixT , __size_type DEGREE>
std::ostream & print (std::ostream &str, const Jet< MatrixT, DEGREE > &coeff, int minDegree=0, int maxDegree=-1, int firstFun=0, int lastFun=-1, int firstVariable=0)
 prints derivatives in the human readable form More...
 
template capd::diffAlgebra::Hessian< double, 0, 0 > operator*<double, 0 > (const capd::DMatrix &, const capd::diffAlgebra::Hessian< double, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< long double, 0, 0 > operator*<long double, 0 > (const capd::LDMatrix &, const capd::diffAlgebra::Hessian< long double, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< capd::DInterval, 0, 0 > operator*<capd::DInterval, 0 > (const capd::IMatrix &, const capd::diffAlgebra::Hessian< capd::DInterval, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< double, 0, 0 > operator*<double, 0 > (const capd::diffAlgebra::Hessian< double, 0, 0 > &, const capd::DMatrix &)
 
template capd::diffAlgebra::Hessian< long double, 0, 0 > operator*<long double, 0 > (const capd::diffAlgebra::Hessian< long double, 0, 0 > &, const capd::LDMatrix &)
 
template capd::diffAlgebra::Hessian< capd::DInterval, 0, 0 > operator*<capd::DInterval, 0 > (const capd::diffAlgebra::Hessian< capd::DInterval, 0, 0 > &, const capd::IMatrix &)
 
template capd::diffAlgebra::Hessian< double, 0, 0 > operator*<double, 0 > (double, const capd::diffAlgebra::Hessian< double, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< long double, 0, 0 > operator*<long double, 0 > (long double, const capd::diffAlgebra::Hessian< long double, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< capd::DInterval, 0, 0 > operator*<capd::DInterval, 0 > (capd::DInterval, const capd::diffAlgebra::Hessian< capd::DInterval, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< capd::MpFloat, 0, 0 > operator*<capd::MpFloat, 0 > (const capd::MpMatrix &, const capd::diffAlgebra::Hessian< capd::MpFloat, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< capd::MpInterval, 0, 0 > operator*<capd::MpInterval, 0 > (const capd::MpIMatrix &, const capd::diffAlgebra::Hessian< capd::MpInterval, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< capd::MpFloat, 0, 0 > operator*<capd::MpFloat, 0 > (const capd::diffAlgebra::Hessian< capd::MpFloat, 0, 0 > &, const capd::MpMatrix &)
 
template capd::diffAlgebra::Hessian< capd::MpInterval, 0, 0 > operator*<capd::MpInterval, 0 > (const capd::diffAlgebra::Hessian< capd::MpInterval, 0, 0 > &, const capd::MpIMatrix &)
 
template capd::diffAlgebra::Hessian< capd::MpFloat, 0, 0 > operator*<capd::MpFloat, 0 > (capd::MpFloat, const capd::diffAlgebra::Hessian< capd::MpFloat, 0, 0 > &)
 
template capd::diffAlgebra::Hessian< capd::MpInterval, 0, 0 > operator*<capd::MpInterval, 0 > (capd::MpInterval, const capd::diffAlgebra::Hessian< capd::MpInterval, 0, 0 > &)
 

Function Documentation

◆ operator!=()

template<typename Scalar , __size_type M, __size_type D>
bool capd::diffAlgebra::operator!= ( const Hessian< Scalar, M, D > &  h1,
const Hessian< Scalar, M, D > &  h2 
)
inline

◆ operator*() [1/3]

template<typename ScalarType , __size_type D>
Hessian< ScalarType, D, D > capd::diffAlgebra::operator* ( const capd::vectalg::Matrix< ScalarType, D, D > &  m,
const Hessian< ScalarType, D, D > &  c2 
)

◆ operator*() [2/3]

template<typename ScalarType , __size_type D>
Hessian< ScalarType, D, D > capd::diffAlgebra::operator* ( const Hessian< ScalarType, D, D > &  c2,
const capd::vectalg::Matrix< ScalarType, D, D > &  m 
)

◆ operator*() [3/3]

template<typename ScalarType , __size_type D>
Hessian< ScalarType, D, D > capd::diffAlgebra::operator* ( ScalarType  c,
const Hessian< ScalarType, D, D > &  H 
)

◆ operator+()

template<typename ScalarType , __size_type D>
Hessian<ScalarType,D,D> capd::diffAlgebra::operator+ ( const Hessian< ScalarType, D, D > &  H1,
const Hessian< ScalarType, D, D > &  H2 
)
inline

◆ operator<<()

template<typename T , capd::vectalg::__size_type M, capd::vectalg::__size_type D>
std::ostream& capd::diffAlgebra::operator<< ( std::ostream &  str,
const Hessian< T, M, D > &  h 
)

◆ operator==() [1/2]

template<typename Object , __size_type M, __size_type N, __size_type D>
bool capd::diffAlgebra::operator== ( const CnContainer< Object, M, N, D > &  c1,
const CnContainer< Object, M, N, D > &  c2 
)

checks if two CnContainers are exactly the same.

◆ operator==() [2/2]

template<typename Scalar , __size_type M, __size_type D>
bool capd::diffAlgebra::operator== ( const Hessian< Scalar, M, D > &  h1,
const Hessian< Scalar, M, D > &  h2 
)
inline

◆ setDimensionInArray() [1/2]

template<typename Scalar >
void capd::diffAlgebra::setDimensionInArray ( Hessian< Scalar, 0, 0 > *  t,
__size_type  N,
__size_type  M,
__size_type  D 
)
inline

◆ setDimensionInArray() [2/2]

template<typename Scalar , __size_type M, __size_type D>
void capd::diffAlgebra::setDimensionInArray ( Hessian< Scalar, M, D > *  ,
__size_type  ,
__size_type  ,
__size_type   
)
inline