CAPD::DynSys Library  6.0.0
capd::dynsys Namespace Reference

Classes

class  BasicC2OdeSolver
 
class  BasicCnOdeSolver
 
class  BasicFadOdeSolver
 
class  BasicOdeSolver
 MapT constraints: type definitions: More...
 
class  C1DynSys
 
class  C2DynSys
 
class  C2OdeSolver
 
class  CnDynSys
 
class  CnOdeSolver
 
class  Linear2d
 
class  Linear3d
 
class  OdeNumTaylor
 
class  VLin3D
 
class  DiscreteDynSys
 DiscreteDynSys is a proxy to convert any Map into discrete Dynamical System. More...
 
class  FlowballSet
 
class  DynSys
 Class dynsys is an abstract class representing a discrete dynamical system. More...
 
class  HOSolver
 
class  DynSysMap
 DynSysMap is a proxy to convert any Map into discrete Dynamical System. More...
 
class  FadFunction
 
class  FadMap
 
class  LorenzFadMap
 Sample implementation of FadMap. This class implements the vector field for the Lorenz system. Template parameters are: Scalar: double, interval, MpFloat, MpInterval, etc. D: in this case either 3 or 0. If D=3 then vectors and matrices are allocated on stack and the computations are much faster but we must know they dimension at compile time. This forces separate compilation of all the classes like vectors and matrices for this particular dimension. D=0 means that vectors and matrices are allocated on the storage and they can be of arbitrary dimension specified at runtime. More...
 
class  LorenzSection
 
class  FadOdeSolver
 
class  FirstOrderEnclosure
 
class  HighOrderEnclosure
 This file defines class for computation of [C0-C2] rough enclosure to an ODE by high order Taylor method. More...
 
struct  C1SetMove
 
struct  C1SetMove< T, SetT, false >
 
struct  C2SetMove
 
struct  C2SetMove< T, SetT, false >
 
struct  CnSetMove
 
struct  CnSetMove< T, SetT, false >
 
struct  C1JetMove
 
struct  C1JetMove< T, JetT, false >
 
struct  C2JetMove
 
struct  C2JetMove< T, JetT, false >
 
struct  CnJetMove
 
struct  CnJetMove< T, JetT, false >
 
class  MpLastTermsStepControl
 
class  StepControlInterface< MpLastTermsStepControl, Scalar >
 This class is a common interface for StepControl used in PoincareMap and TimeMap. Both classes inherit this interface. More...
 
class  OdeSolver
 
class  OdeTraits
 Defines characteristic traits of ODE. More...
 
class  SolverException
 
class  StepControlInterface
 This class is a common interface for StepControl used in PoincareMap and TimeMap. Both classes inherit this interface. More...
 
class  NoStepControlInterface
 
class  NoStepControl
 This class provides an empty time step control for the solutions to ODEs. It contains an interface for other implementations of TSC. More...
 
class  StepControlInterface< NoStepControl, double >
 
class  FixedStepControl
 
class  ILastTermsStepControl
 
class  DLastTermsStepControl
 
class  IEncFoundStepControl
 

Functions

template<class Solver , class RemainderType >
void computeAndApproveRemainder (Solver &solver, const typename Solver::ScalarType &t, const typename Solver::VectorType &xx, RemainderType &o_rem, RemainderType &o_enc)
 
template<typename MapType >
DiscreteDynSys< MapType > makeDiscreteDynSys (const MapType &map)
 Makes DiscreteDynSys object from given map. Template parameters are recognized automatically. More...
 
template<typename MapType >
DynSysMap< MapType > makeDynSysMap (const MapType &map)
 Makes DynSysMap object from given map. Template parameters are recognized automatically. More...
 
template<class Solver >
Solver::ScalarType computeNextStep (Solver &solver, int numberOfTerms, const typename TypeTraits< typename Solver::ScalarType >::Real &epsilon, const typename TypeTraits< typename Solver::ScalarType >::Real &minTimeStep, int degree, bool clearMantissaFlag)
 Computes next time step using already computed Taylor series of the solution. More...
 
template<class Real >
Real clearMantissaBits (Real step, int maxValue=32)
 the following function clears the last bits of mantissa More...
 
template<class Solver >
Solver::ScalarType computeNextStep (Solver &solver, int numberOfTerms, const typename TypeTraits< typename Solver::ScalarType >::Real &epsilon, const typename TypeTraits< typename Solver::ScalarType >::Real &minTimeStep, int degree)
 Computes next time step using already computed Taylor series of the solution. More...
 

Function Documentation

◆ clearMantissaBits()

template<class Real >
Real capd::dynsys::clearMantissaBits ( Real  step,
int  maxValue = 32 
)

the following function clears the last bits of mantissa

◆ computeNextStep() [1/2]

template<class Solver >
Solver::ScalarType capd::dynsys::computeNextStep ( Solver &  solver,
int  numberOfTerms,
const typename TypeTraits< typename Solver::ScalarType >::Real &  epsilon,
const typename TypeTraits< typename Solver::ScalarType >::Real &  minTimeStep,
int  degree 
)

Computes next time step using already computed Taylor series of the solution.

We choose time step so that expected error of the next step of the ODE integration is less than epsilon.

Remarks
For non rigorous computations it is good to take more that one term to prevent big time steps when the last term happens to be close to zero
Parameters
solverODE solver containing Taylor series of the solution for current step
numberOfTermsnumber of terms in Taylor series to use in predictions
epsilonexpected error for one step of integration
minTimeStepminimal time step allowed

◆ computeNextStep() [2/2]

template<class Solver >
Solver::ScalarType capd::dynsys::computeNextStep ( Solver &  solver,
int  numberOfTerms,
const typename TypeTraits< typename Solver::ScalarType >::Real &  epsilon,
const typename TypeTraits< typename Solver::ScalarType >::Real &  minTimeStep,
int  degree,
bool  clearMantissaFlag 
)

Computes next time step using already computed Taylor series of the solution.

We choose time step so that expected error of the next step of the ODE integration is less than epsilon.

Remarks
For non rigorous computations it is good to take more that one term to prevent big time steps when the last term happens to be close to zero
Parameters
solverODE solver containing Taylor series of the solution for current step
numberOfTermsnumber of terms in Taylor series to use in predictions
epsilonexpected error for one step of integration
minTimeStepminimal time step allowed
clearMantissaFlagdecides if less important mantissa bits are set to zero (improves computations)