|
CAPD::DynSys Library
6.0.0
|
Classes | |
| class | CubicalMap |
| class | ForbiddenSet |
| class that defines forbidden set More... | |
| class | Graph |
| It defines a graph that in each node can store additional data. More... | |
| struct | GraphNode |
| struct | GetKey |
| struct | less |
| struct | less< capd::vectalg::Vector< short int, 2 > > |
| struct | MapGraphNodeData |
| class | MapGraph |
| class | Scope |
| class that defines set of regions it can be used do define domain, range, allowed sets for graphs More... | |
Functions | |
| template<class MapT , class V , class M > | |
| V | computeDerivative (MapT &f, V u, M &A, int period) |
| Given a map 'f' it computes the derivative of 'period' iteration of 'f' at 'u'. More... | |
| template<class M > | |
| std::pair< typename M::RowVectorType, typename M::RowVectorType > | computeCoordSystem (const M &A, M &rVec) |
| template<class MapT , class V , class M > | |
| std::pair< V, V > | computeCoordSystem (MapT &f, V u, int period, M &rVec) |
| template<class Map , class V , class Jet > | |
| void | oneDimInvariantManifold (Map &f, typename Map::VectorType &x, Jet &jet, int period) |
| This is a generic algorithm for computing (nonrigorous) parameterization of one-dimensional invariant manifold at a fixed point x. More... | |
| template<typename GraphT > | |
| void | noVisualization (const GraphT &g) |
| template<class GraphT > | |
| void | computePositiveInvariantSet (GraphT &graph, std::list< typename GraphT::VectorType > &domain, int subdiv, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
| computes enclosure of the positive invariant set More... | |
| template<class GraphT > | |
| void | computeInvariantSet (GraphT &graph, std::list< typename GraphT::VectorType > &domain, int subdiv, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
| computes enclosure of the positive invariant set More... | |
| template<class GraphT > | |
| void | computeInvariantSet (GraphT &graph, typename GraphT::VectorType &domain, int subdiv, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
| computes enclosure of the positive invariant set More... | |
| template<typename MapType , typename SetType > | |
| void | insertMapKeysIntoSet (const MapType &map, SetType &set) |
| inserts all map keys into set More... | |
| template<typename GraphT , typename ConstraintsT > | |
| void | propagateGraph (GraphT &graph, ConstraintsT &constraints, void(*showGraph)(const GraphT &g)=noVisualization< GraphT >) |
| it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added More... | |
| template<typename GraphT , typename ConstraintsT > | |
| void | propagateVertexSet (GraphT &graph, ConstraintsT &constraints, typename GraphT::VertexSet &result) |
| it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added More... | |
| std::pair<typename M::RowVectorType,typename M::RowVectorType> capd::invset::computeCoordSystem | ( | const M & | A, |
| M & | rVec | ||
| ) |
| std::pair<V,V> capd::invset::computeCoordSystem | ( | MapT & | f, |
| V | u, | ||
| int | period, | ||
| M & | rVec | ||
| ) |
| V capd::invset::computeDerivative | ( | MapT & | f, |
| V | u, | ||
| M & | A, | ||
| int | period | ||
| ) |
Given a map 'f' it computes the derivative of 'period' iteration of 'f' at 'u'.
| void capd::invset::computeInvariantSet | ( | GraphT & | graph, |
| std::list< typename GraphT::VectorType > & | domain, | ||
| int | subdiv, | ||
| void(*)(const GraphT &g) | showGraph = noVisualization<GraphT> |
||
| ) |
computes enclosure of the positive invariant set
| [in,out] | graph | graph should contain map, resolution and optionally initial set of vertices (if not the parameter domain will be used) |
| [in] | domain | list of boxes that covers domain (even if domain is already set in graph, this information is needed to restrict range of a cubical map) |
| [in] | subdiv | number of the graph subdivision (in one iteration we subdivide only in one dimension) |
|
inline |
computes enclosure of the positive invariant set
| [in,out] | graph | graph should contain map, resolution and optionally initial set of vertices (if not the parameter domain will be used) |
| [in] | domain | "reclangular" domain |
| [in] | subdiv | number of the graph subdivision (in one iteration we subdivide only in one dimension) |
| void capd::invset::computePositiveInvariantSet | ( | GraphT & | graph, |
| std::list< typename GraphT::VectorType > & | domain, | ||
| int | subdiv, | ||
| void(*)(const GraphT &g) | showGraph = noVisualization<GraphT> |
||
| ) |
computes enclosure of the positive invariant set
| [in,out] | graph | graph should contain map, resolution and optionally initial set of vertices (if not the parameter domain will be used) |
| [in] | domain | list of boxes that covers domain (even if domain is already set in graph, this information is needed to restrict range of a cubical map) |
| [in] | subdiv | number of the graph subdivision (in one iteration we subdivide only in one dimension) |
| void capd::invset::insertMapKeysIntoSet | ( | const MapType & | map, |
| SetType & | set | ||
| ) |
inserts all map keys into set
|
inline |
| void capd::invset::oneDimInvariantManifold | ( | Map & | f, |
| typename Map::VectorType & | x, | ||
| Jet & | jet, | ||
| int | period | ||
| ) |
This is a generic algorithm for computing (nonrigorous) parameterization of one-dimensional invariant manifold at a fixed point x.
| void capd::invset::propagateGraph | ( | GraphT & | graph, |
| ConstraintsT & | constraints, | ||
| void(*)(const GraphT &g) | showGraph = noVisualization<GraphT> |
||
| ) |
it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added
| void capd::invset::propagateVertexSet | ( | GraphT & | graph, |
| ConstraintsT & | constraints, | ||
| typename GraphT::VertexSet & | result | ||
| ) |
it iteratively compute image of all cubes in the graph and adds them if they satisfy constraints until no more new cubes can be added