|
CAPD::DynSys Library
6.0.0
|
Classes | |
| class | Krawczyk |
| class | Mapping |
| General function for Newton or Krawczyk method f:R^n -> R^n. More... | |
Typedefs | |
| typedef NewtonResult | KrawczykResult |
Enumerations | |
| enum | NewtonResult { ResultUndefined = -2 , TooManyIterations = -1 , NoZeroes = 0 , ZeroExists = 1 } |
| Define results returned by Interval Newton Method. More... | |
Functions | |
| template<typename FloatVector , typename MapType > | |
| KrawczykResult | KrawczykProof (const FloatVector &x, double size, MapType &F) |
| template<typename MapType > | |
| KrawczykResult | KrawczykProof (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
| template<typename MapType > | |
| MapType::VectorType | KrawczykOperator (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
| template<typename IntervalVector , typename IntervalMatrix > | |
| void | NewtonInfo (int, IntervalVector, IntervalVector, IntervalVector, IntervalMatrix, IntervalVector) |
| Default function for writing details on Newton Proof. You can define your own specification to replace this default function. More... | |
| template<typename FloatVector , typename MapType > | |
| NewtonResult | NewtonProof (FloatVector &x, double size, MapType &F) |
| Rigorous existence proof of a zero of a given function F. More... | |
| template<typename MapType > | |
| NewtonResult | NewtonProof (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
| Rigorous existence proof of a zero of a given function F. More... | |
| template<typename MapType > | |
| MapType::VectorType | NewtonOperator (const typename MapType::VectorType &x0, const typename MapType::VectorType &X, MapType &F) |
| Computes Newton operator. More... | |
| template<typename FloatVector , typename MapType > | |
| NewtonResult | NewtonProof (const FloatVector &x, double size, MapType &F) |
| std::string | resultToText (NewtonResult code) |
Define results returned by Interval Newton Method.
| Enumerator | |
|---|---|
| ResultUndefined | |
| TooManyIterations | |
| NoZeroes | |
| ZeroExists | |
| MapType::VectorType capd::newton::KrawczykOperator | ( | const typename MapType::VectorType & | x0, |
| const typename MapType::VectorType & | X, | ||
| MapType & | F | ||
| ) |
| KrawczykResult capd::newton::KrawczykProof | ( | const FloatVector & | x, |
| double | size, | ||
| MapType & | F | ||
| ) |
| KrawczykResult capd::newton::KrawczykProof | ( | const typename MapType::VectorType & | x0, |
| const typename MapType::VectorType & | X, | ||
| MapType & | F | ||
| ) |
|
inline |
Default function for writing details on Newton Proof. You can define your own specification to replace this default function.
| MapType::VectorType capd::newton::NewtonOperator | ( | const typename MapType::VectorType & | x0, |
| const typename MapType::VectorType & | X, | ||
| MapType & | F | ||
| ) |
Computes Newton operator.
| [in] | x | approximated zero of F, we assume that |
| [in] | X | set X |
| [in] | F | class which can calculate value of the function F (by calling F(x)) and its derivative dF (by calling F[x]) |
| NewtonResult capd::newton::NewtonProof | ( | const FloatVector & | x, |
| double | size, | ||
| MapType & | F | ||
| ) |
| NewtonResult capd::newton::NewtonProof | ( | const typename MapType::VectorType & | x0, |
| const typename MapType::VectorType & | X, | ||
| MapType & | F | ||
| ) |
Rigorous existence proof of a zero of a given function F.
We compute rigorously Newton operator
and we check assumptions of the Interval Newton Method.
| [in] | x | approximated zero of F, we assume that |
| [in] | X | set X, in which we search for a zero of F |
| [in] | F | class which can calculate value of the function F and its derivative dF |
| NewtonResult capd::newton::NewtonProof | ( | FloatVector & | x, |
| double | size, | ||
| MapType & | F | ||
| ) |
Rigorous existence proof of a zero of a given function F.
We compute rigorously Newton operator
and we check assumptions of the Interval Newton Method.
| [in] | x | approximated zero of F, |
| [in] | size | radius of set X, ( |
| [in] | F | class which can calculate value of the function F (by calling F(x)) and its derivative dF (by calling F[x]) |
|
inline |